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Abstract. We study nonlinear transport for two coupled one-dimensional quantum wires or carbon nan-
otubes described by Luttinger liquid theory. Transport properties are shown to crucially depend on the
contact length Lc. For a special interaction strength, the problem can be solved analytically for arbitrary
Lc. For point-like contacts and strong interactions, a qualitatively different picture compared to a Fermi
liquid emerges, characterized by zero-bias anomalies and strong dependence on the applied cross voltage.
In addition, pronounced Coulomb drag phenomena are important for extended contacts.

PACS. 71.10.Pm Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) –
72.10.-d Theory of electronic transport; scattering mechanisms – 72.80.Rj Fullerenes and related materials

1 Introduction

Transport in interacting one-dimensional (1D) quantum
wires (QW) has attracted ever-increasing attention over
the past decade. This interest was sparked mainly by the
discovery of novel 1D materials besides standard (semi-
conductor or organic chain molecule) systems, such as
edge states in fractional quantum Hall bars or carbon nan-
otubes. Furthermore, 1D QWs are predicted to behave as
a Luttinger liquid (LL) due to electron-electron interac-
tions [1]. Recent nonlinear transport experiments [2] for
individual nanotubes have indeed demonstrated impres-
sive agreement with the LL theory of nanotubes [3]. In
these experiments, transport was limited either by the
contact resistance to the leads, or by a tunnel junction
(“topological kink”) within the nanotube. In both cases,
the observed power laws in the (nonlinear) conductance
have allowed for a consistent explanation in terms of LL
theory.

Different transport experiments built up of at least
two nanotubes can reveal even more dramatic deviations
from Fermi liquid transport. The theoretical predictions
of reference [4] for crossed nanotubes (which are coupled
in a pointlike way) were recently observed experimentally
by Kim et al. [5]. For longer contacts between the nan-
otubes, Coulomb drag [6] is expected to play an important
role in addition to the crossed nanotube scenario. This ef-
fect reveals itself as an asymmetry of the current-voltage
characteristics with respect to changing the sign of one
of the voltages. Coulomb drag can be very pronounced in
one dimension and leads to quite rich physics. In this pa-
per, we study in detail two nanotubes arranged parallel
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to or crossing each other, and briefly discuss more com-
plex setups. Notably, such experiments are feasible using
present-day technology [5,7].

The main part of the paper focuses on the schematic
geometry shown in Figure 1, where transport through two
clean (ballistic) nanotubes biased by voltages U1,2 is stud-
ied. The nanotubes are brought to contact by crossing
them under an angle Ω. By varying this angle, the effec-
tive contact length Lc can be changed. We shall address
the crossover from a point-like crossing, where Lc ≈ a
with the lattice spacing a, to an extended coupling, where
a� Lc ≤ L with the tube length L. Besides our previous
paper [4], theoretical predictions for transport in such a
geometry have been given by other authors [8–11]. Their
results were largely obtained in the linear regime, or focus
on either very small or very large Lc. In this paper, we
cover the full crossover from a point-like to an extended
contact, and explicitly compute nonlinear current-voltage
relations. For simplicity, we consider the same interaction
strength parameter g and Fermi velocity vF for both QWs.
The LL parameter g equals unity for a Fermi gas, and be-
comes smaller for strong repulsive interactions. Provided
one works on an insulating substrate, the LL parame-
ter has only a weak logarithmic dependence on the tube
length L, and the experimentally observed value g ≈ 0.25
[2,3,5] indicates strong non-Fermi liquid behavior.

For repulsive interactions (g < 1), the most important
coupling between the two nanotubes is of electrostatic ori-
gin [4]. It is responsible for the most relevant operator un-
der the renormalization group (RG), and can cause abso-
lute Coulomb drag at low temperatures. In this regime the
currents in both conductors are equal at all applied volt-
ages. In addition, as indicated by the data of reference [7],
electron tunneling between the QWs can be important.



272 The European Physical Journal B

Fig. 1. Two crossed nanotubes in contact to reservoirs for
applied voltage U1 and U2, respectively (schematic view).
Different crossing angles Ω imply different effective contact
lengths Lc.

Provided one has sufficiently strong interactions, tunnel-
ing into a LL is irrelevant in the RG sense. In that case,
one can treat it perturbatively, at least for not exceedingly
large tunneling amplitude. Notice that otherwise our as-
sumption of clean wires breaks down in any case, since
good mechanical contact of the QWs indicates impurity
formation within each QW.

The outline of our paper is as follows. In Section 2,
we briefly review the LL concept and discuss how the the-
ory can incorporate adiabatically coupled voltage reser-
voirs in terms of Sommerfeld-like radiative boundary con-
ditions [12]. Adiabatic means that the coupling of the 1D
wire to the 2D/3D leads occurs by a widening that is
smooth on the scale of the Fermi wavelength, so that there
is no particle reflection at the contacts. Section 3 presents
a detailed discussion of transport for the setup in Figure 1
under the assumption of negligible tunneling. In particu-
lar, for the special interaction strength g = 1/2, the full
temperature-dependent transport problem is solved for ar-
bitrary contact length Lc. The main findings of Sections 2
and 3 are summarized in Table 1.

The role of adiabaticity of the contacts to the reser-
voirs for the described effects is addressed in Section 4,
where we study weakly contacted reservoirs in the tunnel-
ing limit. In Section 5, effects of inter-wire tunneling are
discussed, and in Section 6 some conclusions and possible
applications are outlined.

For clarity, we focus on spinless single-channel QWs.
The modifications arising for spin-1/2 electrons or car-
bon nanotubes are then straightforward and will be ad-
dressed in Section 6. In addition, the relevant energy scale
is supposed to exceed vF/L, so that we can effectively put
L→∞. Below we put h̄ = e = kB = 1 and v = vF/g = 1.

2 Model

The LL concept for 1D metals is most transparent in the
bosonization representation [1]. The electron field oper-
ator is written as superposition of left- and right-moving
(p = R/L = ±) fermions ψpα(x) for QW α = 1, 2. The lat-
ter are expressed in terms of canonically conjugate bosonic

fields θα(x) and φα(x),

ψpα(x) ∼ (2πa)−1/2 exp[−ipkFαx]

× exp
[
−ip(πg)1/2θα(x)− i(π/g)1/2φα(x)

]
,

(1)

where a is a lattice constant. The Fermi momentum kFα

in the two QWs can be made different by uniformly shift-
ing the chemical potentials of both reservoirs attached to
one wire. The kFα are defined such that the chemical po-
tentials are ±U1,2/2 as indicated in Figure 1. Using equa-
tion (1), the density operator ρα(x) is

ρα = (g/π)1/2∂xθα +
kFα

π
sin
[
2kFαx+

√
4πg θα

]
. (2)

The uncoupled clean QWs correspond to the standard LL
Hamiltonian,

H0 =
∑
α

1
2

∫
dx
[
(∂xφα)2 + (∂xθα)2

]
. (3)

Let us next address how the coupling of each wire to
the voltage reservoirs can be taken into account. For adi-
abatic coupling, the electron densities near the end of the
QW obey the radiative boundary conditions [12]

g−2 ± 1
2

ρRα(∓L/2) +
g−2 ∓ 1

2
ρLα(∓L/2) = ± Uα

4πg
,

(4)

where the p = R/L = ± moving densities in wire α are

ρpα(x) = (4πg)−1/2∂x[gθα + pφα]. (5)

These boundary conditions need to be enforced for the sta-
tionary expectation values of the densities ρpα in the QW
near the respective contact to the leads. They hold for ar-
bitrary impurity scattering within each wire and therefore
also in the presence of coupling between the two wires.

In the absence of inter-wire tunneling, the charge
current

Iα(x) = e(g/π)1/2∂tθα(x) (6)

is conserved and independent of x. In the presence of tun-
neling, however, we need to distinguish Iα(x < −Lc/2)
and Iα(x > Lc/2). Postponing the discussion of inter-wire
tunneling to Section 5, the conductance of each (impurity-
free) QW is thus G0 = e2/h in the absence of electrostatic
inter-wire coupling. The latter then implies a reduction of
the conductance

Gα = Iα/Uα , (7)

since the transport-carrying density waves drag each
other, which makes them “heavier.” For low energy scales,
the electrostatic coupling can be expressed as a local prod-
uct of densities in the two wires. To justify the locality
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of inter-wire interactions, one can employ the same rea-
soning as for the locality of the intra-wire interaction [1].
Neglecting momentum-non-conserving terms, we obtain

H1 = V1

∫
dx ζ(x)ρ1(x)ρ2(x)

= V1a

∫
dxζ(x)∂xθ1∂xθ2

+ V1b

∫
dxζ(x) sin

[
2kF1x+

√
4πg θ1(x)

]
× sin

[
2kF2x+

√
4πg θ2(x)

]
, (8)

where V1a = gV1/π and V1b = V1kF1kF2/π
2. The function

ζ(x) specifies the spatial dependence of the inter-wire cou-
pling, and for practical purposes, we consider ζ(x) = 1 for
|x| ≤ Lc/2 and zero otherwise,

ζ(x) = [Θ(x+ Lc/2)−Θ(x− Lc/2)] . (9)

In addition, tunneling leads to

H2 = V2

∫
dxζ(x)

∑
pp′

ψ†p1(x)ψp′2(x) + h.c. , (10)

describing electron transfer between the QWs. The boso-
nized form of H2 can be found in reference [4]. We shall
turn to a discussion of tunneling in Section 5. Josephson-
type couplings [13] are irrelevant for g < 1 and hence will
be ignored in the following.

3 Electrostatically coupled nanotubes

In this section, we assume that tunneling can be ne-
glected, and consider a system described by the Hamilto-
nian H = H0 +H1 under the boundary conditions (4). Be-
low we separately discuss three cases, namely (a) a strictly
local contact with Lc → 0, (b) a short but finite contact
length Lc ≈ a, and (c) for the special interaction strength
g = 1/2, we present an analytical solution valid for arbi-
trarily long contacts. Of particular interest is the differen-
tial conductance matrix,

Gαα′ = ∂Iα/∂Uα′ . (11)

The off-diagonal conductance G12 (or G21), the so-called
“transconductance”, is the appropriate quantity measur-
ing Coulomb drag [6]. For U1 = U2 = 0, the matrix Gαα′
describes the linear conductances. Generally, the diago-
nal conductance Gαα and the conductance Gα defined in
equation (7) show qualitatively the same behavior.

3.1 Strictly local contact

Let us start with an ideal point-like contact, where from
equation (9), we get for Lc → 0 the result ζ(x) = Lcδ(x).
In that case, tunneling is always irrelevant for g < 1, and
the only relevant coupling corresponds to the scaling field

V1b in equation (8), provided g < 1/2. For g > 1/2, the
effects of tunneling (V2) and of the electrostatic coupling
(V1b) can both be treated perturbatively, since in this case
they are all irrelevant and the fixed point is represented
by two fully decoupled conductors. The results for this
regime can be found, e.g. in reference [8].

We shall therefore focus on the most interesting strong-
interaction region g < 1/2 in this subsection, and omit
the irrelevant perturbation V1a as well as tunneling (V2).
Introducing symmetric and antisymmetric fields [4],

θ±(x) = [θ1(x) ± θ2(x)]/
√

2 , (12)

φ±(x) = [φ1(x)± φ2(x)]/
√

2 ,

the Hamiltonian decouples, H = H+ +H−, with

H± =
1
2

∫
dx[(∂xφ±)2 + (∂xθ±)2]

± (LcV1b/2) cos[
√

8πg θ±(0)] . (13)

An effective coupling strength is defined as

TB = (cg/a)[aLcV1b]1/(1−2g) , (14)

where cg is a numerical constant of order unity [14,15].
The boundary conditions (4) also decouple in the sym-
metric/antisymmetric (r = ±) channels. Effective right-
and left-moving (p = R/L = ±) densities ρ̄pr(x) for these
channels can be defined in analogy to equation (5). The
new densities again obey the boundary conditions (4), but
with the effective voltages

U1,2 → Ur=± = (U1 ± U2)/
√

2 . (15)

It is also useful to define the effective current Īr in channel
r = ±, see equation (6). The current in QW α = 1, 2 is
then given by Iα = (Ī+ ± Ī−)/

√
2.

Notably, the full nonlinear correlated transport prob-
lem of crossed LLs therefore completely decouples into
two effective single-impurity problems r = ± character-
ized by effective impurity strength ±TB, applied voltage
(U1 ± U2)/

√
2, and interaction strength 2g. This single-

impurity problem has been studied in detail, e.g. by Kane
and Fisher [14], and the exact solution of the transport
problem for arbitrary interaction strength has been given
in reference [15] by combining equation (4) and power-
ful methods from boundary conformal field theory. The
full nonlinear current-voltage relation was found to be a
solution of an integral self-consistency equation emerging
from the boundary conditions. This solution can then be
immediately applied to the crossed LL transport problem.
The current-voltage relation or, equivalently, the nonlin-
ear conductances Gαα′ are very different from the cor-
responding results for Fermi liquids [6]. The correlation
effects are most pronounced for T = 0 [4], where perfect
zero-bias anomalies, a strong dependence ofG11 on the ap-
plied cross voltage U2, and minima in G11 for |U1| = |U2|
are predicted. Such effects are distinct and dramatic sig-
natures of correlations in a LL, and have found evidence
in recent experiments on crossed multi-wall nanotubes [5].
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Fig. 2. Nonlinear conductance G1(U1, U2) = I1/U1 for g =
1/4, T = 2 and various U2. Units are chosen such that TB = 1
and G0 = e2/h.

Note that for a Fermi liquid, G11 would neither depend
on U1 nor on U2. Thermal fluctuations tend to smear out
these phenomena, see Figure 2, but they remain clearly
discernible. For very strong interactions, g ≤ 0.1, bistabil-
ity effects were reported in reference [15]. As these phe-
nomena require spinless electrons and cannot be observed
in nanotubes, however, we do not further discuss them
here. Based on the mapping of the transport problem of
crossed LLs to two decoupled single-impurity problems, it
is nevertheless straightforward to obtain the conductance
matrix in closed form in the bistability regime.

The rest of this subsection is dedicated to the exact
solution of this transport problem for the special case
g = 1/4. As can be seen from the exact solution for any
g, this choice captures all essential features of crossed LLs
for strong coupling, g < 1/2. The solution at g = 1/4 has
been addressed in reference [4], where it was shown that it
is possible to reformulate the problem for the two decou-
pled channels (13) in terms of new fermions. In this repre-
sentation, the Hamiltonian is easily diagonalized by these
new fermionic operators. The main result of reference [4]
was the following expression for the currents through QW
α = 1, 2,

Iα = (e2/h)[Uα − (V+ ± V−)/
√

2] , (16)

where the V± obey the self-consistency relations

V± = 2TB ImΨ

(
1
2

+
TB + i(U± − V±/2)

2πT

)
, (17)

with the digamma function Ψ . Similar but more com-
plicated self-consistency equations need to be solved for
g 6= 1/4. From equation (16), one can verify that the con-
ductance matrix (11) fulfills the bounds

0 ≤ G11/G0 ≤ 1 , 0 ≤ G12/G0 ≤ 1/2 , (18)

with G0 = e2/h.
In the linear transport regime, |U1,2| � T , by Taylor

expanding equation (17) in the small parameter (U1 ±

U2)/T , we find for g = 1/4 the voltage-independent linear
conductance,

G1/G0 =
1− c Ψ ′(1

2 + c)
1 + c Ψ ′(1

2 + c)
, c = TB/2πT. (19)

More interesting is the transconductance, which reads to
leading order in (U1 ± U2)/T :

G12/G0 =
U1U2

T 2
B

c3Ψ ′′′(1/2 + c). (20)

Clearly, for very small applied voltages (either U1 or
U2 approaching zero), the transconductance vanishes. As
shown in Section 3.2, the vanishing linear transconduc-
tance is a general consequence of the point-like nature
assumed for the contact. For an extended contact, the lin-
ear transconductance need not vanish. For low tempera-
tures, |U1,2| � T � TB, equation (20) gives G12/G0 '
2U1U2/T

2
B, while in the high-temperature limit, T � TB,

we find G12/G0 ' πU1U2TB/8T 3.

3.2 Short contact

Next we turn to a short but nonlocal coupling, where Lc is
of the order of a few lattice spacings a. For short contact
length, the bosonic fields can be expanded in powers of x
around the center of the coupling region, x = 0. The sub-
sequent RG analysis shows that the only relevant coupling
term is still due to the scaling field V1b, and one arrives
again at the Hamiltonian (13). The only difference is the
replacement V1b → V ±1b with

LcV
±

1b = V1b

∫
dxζ(x) cos[2(kF1 ± kF2)x] , (21)

leading to couplings T±B as in equation (14). For large Lc,
T+

B � T−B due to the oscillatory integrand. The result-
ing physics is similar to the point-like case of Section 3.1,
but in addition exhibits linear Coulomb drag [8,9]. No-
tably, we can exploit the exact solution of reference [15]
for the single-impurity problem to solve this problem too.
The only difference arises from equation (21), namely the
energy scale TB becomes channel-asymmetric, TB → T±B .
As a consequence the current I2 and hence G21 can be
nonzero even without applied voltage U2 (Coulomb drag).
However, as T → 0, the linear transconductance vanishes
throughout the strong interaction regime g < 1/2. This is
an artifact of the locality assumption and will not be true
for extended contacts, see below.

In the remainder of this subsection, we again focus on
the case g = 1/4, where the algebra becomes quite simple.
As can be checked with the exact solution of reference [15],
the results for all g < 1/2 are qualitatively similar. In par-
ticular, one has to solve the self-consistency equations (17)
with TB → T±B . For clarity, we consider the special case
U2 = 0, and compute the transconductance G21 defined
in equation (11),

G21(U1, T )/G0 =
1√
2
∂

∂U1
(V− − V+) , (22)
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Fig. 3. Temperature dependence of the linear transconduc-
tance for a short contact length at g = 1/4. We put T−B = 1.
Note that G21 → 0 for T → 0.

where the V± are determined as the U2 = 0 solutions of
equation (17) with TB → T±B . Since T±B are now different
so can be V±, and the linear transconductance at T > 0
can now be finite due to the nonlocality of the contact [8].
We find

G21/G0 =
1
2

∑
±
±

1− c±Ψ ′(1
2 + c±)

1 + c±Ψ ′(1
2 + c±)

, (23)

where c± ≡ T±B /2πT . The temperature dependence of the
g = 1/4 linear transconductance (23) is shown in Figure 3.
We observe that for a long contact, T+

B � T−B , the per-
fectly quantized transconductance e2/2h is approached at
low but finite temperature. This is the absolute drag effect
reported by Nazarov and Averin [9] for a long extended
contact. Equation (23) then describes how the absolute
drag effect is thermally destroyed at high temperatures.

For T = 0 the linear transconductance vanishes. In
this limit, one can obtain the nonlinear g = 1/4 transcon-
ductance for |U1| � T±B and U2 = 0 from equations (22)
and (17),

G21/G0 = (U1/4)2[(T+
B )−2 − (T−B )−2] +O([U1/T

+
B ]4) .

(24)

Finally, let us address the role of a difference in the Fermi
momenta, δkF = kF1−kF2, which could experimentally be
tuned by varying the mean chemical potential in one QW
relative to the other. In the absence of electron tunnel-
ing between the QWs, the nonlinear conductance matrix
Gαα′(U1, U2) for a short contact does only depend on δkF

via the T±B following from equation (21). In fact, for a
strictly local contact (T±B = TB), there is no dependence
on δkF at all unless there is tunneling. As discussed in
Section 5, this effect can be used to experimentally disen-
tangle the effects of tunneling and electrostatic coupling.

3.3 Arbitrary contact length

Next we study an arbitrarily long contact, where Lc can
even approach the system length L. Here tunneling can

be a relevant perturbation under the RG transformation,
provided the interaction is not too strong. Following the
analysis of references [16,17], we can write down the RG
equations,

dV1b

d`
= 2(1− g)V1b + (g − 1/g)V 2

2 ,

dV2

d`
= (2− [g + 1/g]/2)V2 ,

where the standard flow parameter is defined by d` =
−d lnωc with ωc being a high-frequency cutoff, that is
reduced under the RG transformation. The influence of
the V1a-term will be discussed later, and the renormaliza-
tion of g under the RG transformation is dropped, since
this will not change the universality class. Hence we ar-
rive at a slightly modified version of the relations in ref-
erences [16,17]. Following their discussion of two coupled
LLs, for g > g′ =

√
2 − 1 ' 0.414, tunneling is relevant.

In fact, for g > g′′ = 1/
√

3 ' 0.577, tunneling (V2) is
even more relevant than the electrostatic coupling V1b. In
this regime, one should then first treat the tunneling. Be-
low we focus on the strong-interaction case, g < g′′. For
g′ < g < g′′, the main effect of tunneling is a renormaliza-
tion of the electrostatic coupling [17]. In the following we
assume that V1b contains this renormalization and then
omit the scaling field V2. Since for a short contact, tun-
neling is always irrelevant, such a reasoning can be ap-
plied for arbitrary Lc in the regime g < g′′, in particular
for the case g = 1/2 investigated below. The parameter
regime, where the electrostatic coupling is the most rele-
vant perturbation is different for various contact lengths
and extrapolates from g < 1/2 for strictly local contacts
to g < g′′ for infinite extended ones. Therefore we expect
that the exact solution for g = 1/2 for a contact with ar-
bitrary finite length covers, at least qualitatively, all the
essential physics for the whole range of interaction con-
stants g < g′′.

Taking into account the V1a operator in the bulk (i.e.,
for Lc = L) causes a renormalization of the interaction
constants, thereby splitting them [10],

g → g± =
g√

1± gV1a
· (25)

For Lc � L, however, the scaling field V1a is irrelevant.
Below we shall neglect the weak splitting (25). Following
our analysis, this could only create a problem for very long
contacts, Lc ≈ L. The case g = 1/2 then permits a full
solution of this transport problem for arbitrary Lc. The
resulting effective Hamiltonian is

H = H0 + V1b

∫
dxζ(x) sin

[
2kF1x+

√
2π θ1(x)

]
× sin

[
−2kF2x+

√
2π θ2(−x)

]
, (26)

where the spatial coordinate along QW α = 2 has been
changed to −x. As we shall see later, this mirroring of
the axis is crucial to ensure correct anticommutation rela-
tions between new fermionic fields. Expanding the product
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of sin terms, cos functions of the sum and the difference of
the fields θα emerge. In reference [9], only the difference
term was kept, since the other term is highly oscillatory for
long contacts and does not contribute for Lc � a. How-
ever, a proper description of the crossover from a short to
a long contact requires to consider the full coupling (26).
Below we take equation (9) for ζ(x).

3.3.1 Refermionization

Remarkably, the transport problem posed by equa-
tions (26) and (4) can be solved exactly for arbitrary Lc

by refermionization. Switching to the chiral fields,

ϕαR,L =
√
π(φα ± θα) , (27)

we obtain with δkF = kF1 − kF2 and 2kF = kF1 + kF2

H =
1

8π

∑
α=1,2

∫
dx
[
(∂xϕαL)2 + (∂xϕαR)2

]
− V1b

×
∫

dxζ(x)

{∑
p=±

eip2δkFxeip(ϕ1
R(x)−ϕ2

L(−x))/
√

2

× e−ip(ϕ1
L(x)−ϕ2

R(−x))/
√

2

− eip[4kFx+(ϕ1
R(x)+ϕ2

L(−x))/
√

2]

× e−ip(ϕ1
L(x)+ϕ2

R(−x))/
√

2

}
·

We then employ the slightly modified refermionization
transformation of Luther and Emery [18],

Ψ1,2(x) =
η1,2√
2πa

ei2kF1x+i(ϕ1
R(x)∓ϕ2

L(−x))/
√

2 , (28)

Ψ3,4(x) =
η3,4√
2πa

e±i2kF2x∓i(ϕ2
R(−x)∓ϕ1

L(x))/
√

2 .

Special Majorana fermions ηi ensure the correct an-
ticommutation relations between new operators, see
reference [3]. However, all chemical potentials of the
new particles can be incorporated into the refermionized
Hamiltonian (λ = 2πaV1b)

H = −
∫

dx
{ ∑
j=1,2

Ψ†j (x) (i∂x + 2kF1)Ψj(x)

−
∑
j=3,4

Ψ†j (x) (i∂x ∓ 2kF2)Ψj(x)
}

+ iλ
∫

dxζ(x)
{
Ψ†1 (x)Ψ3(x) + Ψ1(x)Ψ†3 (x) (29)

− Ψ2(x)Ψ†4 (x)− Ψ†2 (x)Ψ4(x)
}
·

Then they disappear in the definition (28). This prob-
lem permits an exact solution, since we are left with a

quadratic Hamiltonian expressed in terms of the Ψi(x)
operators. We obtain this solution via the equations of
motion

(∂t ± ∂x)Ψ†1,3(x, t) = ±λζ(x)Ψ†3,1(x, t) (30)

(∂t ± ∂x)Ψ†2,4(x, t) = ∓λζ(x)Ψ†4,2(x, t) . (31)

They describe free chiral fermions with linear dispersion
outside of the contact area. The contact region, |x| ≤
Lc/2, then acts as a scatterer. Denoting by a†i (k) (b†i (k))
the momentum-space creation operator for fermions mov-
ing towards (away from) the scatterer, their respective
particle densities can be related by a transmission matrix
Dij(k),

〈: b†j(k)bj(k) :〉 =
4∑
i=1

Dji(k) 〈: a†i (k)ai(k) :〉 · (32)

The matrix Dij can be found in closed form from equa-
tions (30) and (31), see Section 3.3.2.

To solve the full transport problem, we also need
to re-express the boundary conditions (4) in the new
fermion basis. Defining ρi(x) = 〈: Ψ†i (x)Ψi(x) :〉 as density
of the new fermions, for g = 1/2, we get the relation to
the previous densities ρpα(x) (where p = ± = R/L):

ρp1(x) = (1 + 2p)[ρ1(x) + ρ2(x)]
+ (1− 2p)[ρ3(x)− ρ4(x)],

ρp2(−x) = (2p− 1)[ρ1(x)− ρ2(x)]
− (1 + 2p)[ρ3(x) + ρ4(x)].

The normal ordering should be performed with respect to
the ground state, given by a Fermi sea filled up to k = 2kF1

and k = ∓2kF2 for channels (1, 2) and (3, 4), respectively.
Plugging these last relations into equation (4) gives the
boundary conditions:

3ρ−1 + 3ρ−2 + ρ−3 − ρ−4 = U1/4π , (33)

−ρ+
1 + ρ+

2 − 3ρ+
3 − 3ρ+

4 = −U2/4π ,

ρ+
1 + ρ+

2 + 3ρ+
3 − 3ρ+

4 = −U1/4π ,

−3ρ−1 + 3ρ−2 − ρ−3 − ρ−4 = U2/4π ,

where ρ±i = ρi(±L/2). For the current, one gets

I1 = 2[ρ1(x) + ρ2(x)− ρ3(x) + ρ4(x)] . (34)

Here x is arbitrary due to the continuity equation. The
incoming free fermions must obey the Fermi distribution,

〈: a†j(k) aj(k) :〉 = nF(k − µj)− nF(k) ,

with nF(E) = 1/[exp(E/T ) + 1]. Therefore we obtain

ρ∓j =
∫

dk
2π
〈: a†j(k) aj(k) :〉 ≡ µj , (35)

where − sign should be taken for channels 1 and 2, and
+ for 3 and 4. The effective chemical potentials µj have



A. Komnik and R. Egger: Transport and Coulomb drag for two interacting carbon nanotubes 277

to be computed self-consistently, see below. The outgoing
densities are then given by

ρ±j =
4∑
i=1

∫
dk
2π
Dji(k)[nF(k − µi)− nF(k)], (36)

where ± apply to the channels (1, 2) and (3, 4),
respectively.

3.3.2 Transmission matrix

The transmission matrix contains only one independent
element. Obviously, D13 = D31, D11 = D33, D24 = D42,
and D22 = D44 because of the system symmetry. All other
matrix elements vanish since the channels (1, 3) and (2, 4)
fully decouple. Furthermore, since the Hamiltonian (29)
conserves the net particle numbers in channels (1, 3) and
(2, 4), one has the additional relationsD13(k) = 1−D11(k)
and D24(k) = 1 − D22(k). The last simplification stems
from the symmetry of the equations of motion and reads
D(k) = D22(k) = D11(k).

Let us now explain how to find D(k). Since a right-
mover in channel 1 is scattered to a left-mover in channel 3
within the contact, we can regard them as a single species
which is backscattered by the contact. Then the problem
reduces to the determination of the penetration coefficient
of 1D fermions through a rectangular barrier. The corre-
sponding result can be found, e.g. in reference [19],

D(k) =
4k2|χ|2

λ4| sin[Lcχ]|2 + 4k2|χ|2 , (37)

where χ2 = k2 − λ2. Next we insert equations (35) and
(36) into the boundary conditions (33) and compute the
current from equation (34).

3.3.3 Linear transconductance

The linear transconductance G12 can be found in closed
form, where we focus on T = 0 and δkF = 0 again. No-
tably, this quantity does not vanish in general as it would
for a point-like coupling. Linearizing equation (36) in the
chemical potentials µi, we need to solve the now linear
system of equations (33) for the µi, yielding

2G12/G0 =
1−D(2kF)

1−D(2kF)/2
, (38)

For uncoupled nanotubes, λ→ 0, we find D(2kF) = 1 and
thus G12 = 0. On the other hand, for strongly coupled
tubes, λ→ ∞, we get D(2kF) = 0 and hence recover the
absolute Coulomb drag, G12 = e2/2h, in this limit.

For small contact lengths, it is possible to perform a
Taylor expansion of D(k). The resulting linear transcon-
ductance behaves according to

2G12/G0 =
1
8

(λLc)2 (λ/kF)2 . (39)

-200 -100 0 100 200
0.5

0.75

1.0

Fig. 4. Nonlinear conductance G1 (in units of G0 = e2/h) as
a function of U1 for g = 1/2, T = 0, λ = 4, U2 = 25, and various
contact lengths. The solid curve is obtained analytically for the
shortest contact using the point-like coupling (13).

The local approach of Section 3.2 for g = 1/2 gives

2G12/G0 =
1
3

(2πV1bLc)2 (kFLc)
2 , (40)

where V1b denotes the coupling strength of the related
local problem, see equation (21). These two results suggest
the following relation between the coupling constants

V1b =
1

4πa

(
3
2

)1/2(
λ

kF

)2 1
Lc

, (41)

which establishes a connection between the local approxi-
mation and the exact solution for the system with a short
contact. This amplitude estimates the energy scale below
which the contact can be regarded as short. The corre-
sponding amplitudes V ±1b are then given by a Taylor ex-
pansion of equation (21) to second order in Lc/a, implying
that V −1b = V1b and V +

1b = V1b(1− 2(kFLc)2/3).
Moreover, employing the Sommerfeld expansion, the

finite-temperature corrections

∆G12(T ) = G12(T )−G12(T = 0)

to equation (38) are of the form

∆G12(T )/G0 = −π
2T 2

6
∂2D(k = 2kF)

∂k2

1
(2−D(2kF))2

·

In the general nonlinear case, the current has to be
evaluated numerically, see Figure 4. All curves show a sin-
gularity at U1 → 0, independent of Lc. This singular-
ity implies non-vanishing current for zero applied voltage
and reflects Coulomb drag. Moreover, there are two pro-
nounced dips in curves which are related to the resonances
seen in the case of a local coupling.
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3.3.4 Absolute Coulomb drag

The absolute Coulomb drag reported in references [8,9]
can be recovered by our g = 1/2 solution. For a very long
contact (Lc = L), H can be diagonalized by means of a
Bogolyubov transformation. Consider, e.g. channels j = 1
and 3, with

Ψj(x) =
∫

dk
2π

eikxcj(k) .

Allowing for δkF 6= 0 and switching to

α1(k) = c1(k) cos δk + ic3(k) sin δk ,
α3(k) = −c1(k) sin δk + ic3(k) cos δk ,

where 2δk = arctan(λ/(k + δkF)), we find for the chan-
nels 1 and 3:

H1,3 =
∫

dk
2π

[
2kF +

√
(k + δkF)2 + λ2

]
α†1(k)α1(k)

+
[
2kF −

√
(k + δkF)2 + λ2

]
α†3(k)α3(k) .

The Hamiltonian H2,4 follows accordingly by replacing
δkF ↔ 2kF.

We can now distinguish two situations: (i) |δkF| �
λ, where the channels j = 1, 3 are gapped and therefore
transport for U1,2 � λ is strongly suppressed, and (ii)
|δkF| ≥ λ, with no gap. Since kF � λ, transport properties
involving the channels 2 and 4 will always be perfect. For
case (ii), the coupling λ will thus not significantly affect
transport, i.e. up to weak perturbations, the quantized
ideal currents are found. However, for case (i), we obtain
at T = 0

I1 = (e2/2h)(U1 + U2) , (42)

just as is expected for absolute Coulomb drag. This simple
calculation shows that sufficiently large δkF can destroy
the absolute Coulomb drag. Experimentally, this could be
achieved by uniformly shifting the chemical potentials of
the two reservoirs attached to the same wire.

4 Weakly coupled reservoirs

How important is the requirement of good (adiabatic)
contact to the reservoirs assumed in our theory so far?
Is it still possible to observe the characteristic effects of
crossed LL transport and Coulomb drag with weakly cou-
pled reservoirs? To study this point, we assume now that
reservoirs are coupled to the QWs by tunnel junctions
with (identical) dimensionless tunnel conductance T0 � 1.
In this section, we consider only the limit of zero tem-
perature and sufficiently large applied voltage such that
transport proceeds incoherently at all contacts.

The applied voltage U1 will then split up into three
voltage drops: First, the part U ′1 drops at each junction,
and U ′′1 at the contact between the nanotubes, where U1 =

2U ′1 + U ′′1 . The current I1 injected into the QW from the
(say, left) reservoir is then

I1 = T0G0U
′
1|aU ′1|νg−1. (43)

Here the exponent νg = 1/g applies to the case of an
end-contacted (spinless single-channel) QW, while νg =
(g + 1/g)/2 for a bulk-contacted QW [3]. If the voltage
drop U ′′1 across the crossing point is significantly higher
than U ′1, the correlation effects described in the previous
section dominate the transport process, and we may use
the strong-coupling form of the current [4],

I1 = G0TB

∑
±

sgn(U ′′1 ± U ′′2 )(|U ′′1 ± U ′′2 |/TB)1/g−1. (44)

Since both equations (43) and (44) must give the same
current, the condition U ′′1 � U ′1 leads to the estimate

U1, U2 � TB[T0(aTB)νg−1]−1/(νg+1−1/g) . (45)

Once this condition is satisfied, typical crossed LL effects
can be observed even for non-adiabatic (weak) coupling
to the voltage reservoirs. Evidently, equation (45) cannot
be satisfied for end-contacted QWs. This is because the
power-law exponent in equation (45) is always negative
(namely −1), and with T0 � 1 the inequality cannot be
satisfied except for unreasonably high U1. However, as-
suming that we have bulk-contacted QWs with g < gx
where gx =

√
2 − 1 ' 0.414, the power-law exponent

changes sign, and then the condition (45) can be fulfilled
even for very small applied voltage U1.

5 Electron tunneling

Let us now address the influence of electron tunneling be-
tween the QWs. For clarity, we shall focus on the case of
a strict point-like contact (Lc → 0) as in Section 3.1. As-
suming g < 1, tunneling is then irrelevant under the RG
and can be treated to lowest order in the tunneling matrix
element t (unless t is very large). In addition, we restrict
ourselves to small applied voltages, |U1,2|, δkF � TB, at
zero temperature, where with the exact solution at hand
the tunneling density of states (TDOS), describing elec-
tron tunneling into QW α = 1, 2 (at x = 0) in the pres-
ence of the electrostatic coupling, can be shown to carry
the standard power-law suppression factor [14],

ρ(E) ∝ Θ(E)E1/g−1. (46)

Of particular interest will be the effect of δkF = kF1−kF2

on the transport properties in the presence of tunneling
(without loss of generality, we consider δkF > 0).

Tunneling modifies the currents flowing to the left
and to the right of the coupling point x = 0. Under a
golden rule calculation, these currents can be easily found
from the rates for tunneling of a p = ± = R/L mover
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in QW 1 into a p′ mover in wire 2:

Γp1→p′2 = |t|2Θ(∆pp′ )
∫ ∆pp′

0

dE ρ(E)ρ(∆pp′ −E) .

(47)

Because of the pointlike coupling, there is no momentum
conservation, and the tunneling electron can change its
chirality. In equation (47),

∆pp′ = δkF/g + µp1 − µp′2 , (48)

where µpα is the chemical potential of a p mover in QW
α = 1, 2 (relative to the respective mean chemical poten-
tial), which is determined by the applied voltages U1,2 and
the electrostatic coupling TB. Simple dimensional scaling
gives from equation (47)

Γp1→p′2 ∝ ∆2/g−1
pp′ . (49)

For δkF � g|U1, U2|, the tunneling rates become indepen-
dent of the applied voltages U1,2. In this limit, tunneling
rates are large, and therefore tunneling can potentially
modify the transport behaviors discussed in Section 3.
However, for δkF � g|U1, U2|, the rates are power-law
suppressed, and hence tunneling rates become very small.
In fact, since the power-law exponent is larger than the
one in the absence of tunneling, see equation (44), we ex-
pect that tunneling leads only to subleading corrections
for small δkF. The role of tunneling in a concrete exper-
iment could then be revealed by simply tuning δkF from
zero to large values. If this leads to a destruction of the
crossed LL scenario, tunneling matrix elements must be
sizeable and should be taken into account for large δkF.

6 Conclusions and applications

Let us briefly summarize the conclusions and major find-
ings of our paper. We have studied transport through two
spinless quantum wires that are coupled along a contact
length Lc. Assuming that the wires are in the Luttinger
liquid state with sufficiently strong interactions, the main
coupling mechanism is of electrostatic nature, and tun-
neling provides only perturbative corrections to the prob-
lem. The electrostatic coupling leads to qualitatively new
nonequilibrium transport behaviors compared to the case
of Fermi liquid wires, namely crossed Luttinger liquid ef-
fects and Coulomb drag. Crossed Luttinger liquid effects
are characterized by pronounced zero bias anomalies, de-
pendencies of transport currents on applied cross voltages,
and resonant behaviors at finite voltages. For extended
contacts, very pronounced Coulomb drag effects arising
at low temperatures were found. For short contacts, the
linear transconductance has a maximum at a finite tem-
perature and approaches zero as T → 0.

For sufficiently long contacts Coulomb drag can even
be perfect at low temperatures, with the transconductance
approaching its largest possible value e2/2h. We have pre-
sented an exact solution of the full transport problem valid

Table 1. Main results of Sections 2 and 3.

Lc Lc → 0 Lc ≈ a Lc ≈ L

V1b relevant g < 1/2 g < 1/2 g <
√

3− 1

for

Solution exact exact for g = 1/2

Method mapping mapping refermionization,

Bogolyubov

transformation

Calculated Eqs. (16, 17) modified Eq. (38)

quantity full I − V Eqs. (16, 17) lin. transcon-

full I − V ductance

for arbitrary contact length Lc at the special interaction
strength g = 1/2. In addition, the nonlinear properties of
Coulomb drag and their relation to crossed Luttinger liq-
uid effects were clarified. The main findings of Sections 2
and 3 are represented on Table 1.

Our study has assumed adiabatic coupling to the volt-
age reservoirs. However, as outlined in Section 4, for suffi-
ciently strong interactions, the same characteristic effects
are expected for bulk-contacted wires, where the wires are
in weak (tunneling) contact with the leads. In addition, we
have shown that the tunneling between the wires should
cause only subleading corrections to the behaviors out-
lined here for small δkF = kF1− kF2. However, by varying
this quantity, the role of tunneling can be easily deter-
mined in practice. For large δkF, the characteristic cor-
relation effects will be washed out by a sufficiently large
tunneling matrix element.

All these results for spinless single-channel systems can
easily be extended to spinful quantum wires and nan-
otubes. In these cases, the bosonized form of the most
relevant operator V1b is still the same but with differ-
ent scaling dimension (instead of 2g), namely 4g and 8g,
respectively. Despite this simplicity, these operators look
more involved in the original fermion basis, consisting of
a product of 8 (16) fermionic operators for spin- 1

2 QWs
(nanotubes). In addition, in spin-1

2 QWs and nanotubes,
one will have additional operators which are however less
relevant than V1b and can be handled perturbatively at
low energy scales. With these modifications, the results
of Section 2 can be straightforwardly applied to QWs
or nanotubes. Further complications arise for long con-
tacts, since tunneling may modify our simple g = 1/2
picture. However, from the analysis of the possible scal-
ing dimensions, we expect that most of Section 3 does
also apply to nanotubes. The conclusion of Section 4 con-
cerning end-contacted QWs also remains valid, but for
bulk-contacted QWs (nanotubes), the critical value of
the interaction constant changes to the very small values
gx =

√
5− 2 ≈ 0.236... (gx =

√
17− 4 ≈ 0.123...) instead

of the spinless value gx =
√

2 − 1. Finally, the results
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Fig. 5. Amplification circuit based on crossed nanotubes. For
fixed R and U0 it is possible to achieve |∂U2/∂U1| � 1.
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Fig. 6. Voltage amplification ratio for RG0 = 1 at T = 0 and
g = 1/4 (here TB = 1).

of Section 6 carry over to the case of spin- 1
2 QWs (nan-

otubes) with a change in the end exponent from 1/g − 1
to [1/g + 1]/2− 1 ([1/g + 3]/4− 1), see reference [3].

Let us conclude the paper with two possible applica-
tions. Crossed nanotubes could be used for voltage ampli-
fication, e.g. by using the circuit shown in Figure 5. The
circuit equation U1[1 + RG(U1, U2)] = U0 can be easily
solved for g = 1/4 and T = 0, with the results depicted in
Figure 6. Clearly, the voltage amplification ratio ∂U2/∂U1

can be tuned to extremely high values. A more complex
setup built up of three nanotubes coupled to each other
in a star-like manner is shown in Figure 7. If the distance
LK between the contact points exceeds the length scales
v/T or v/Ui, transport proceeds in an incoherent way and
can thus be modelled as a sequence of crossed LLs. The
voltage drops U ′i and U

′′

i arising at the respective con-
tacts obey Ui = U ′i +U

′′

i , and now effectively play the role
of two-terminal voltages. This allows for the direct appli-
cation of the results of Section 3, and the whole current-
voltage characteristics of such a setup can be obtained. We
only point to one interesting consequence of this solution,
namely the possibility of a voltage measurement involving
only electrostatic contact. Setting, say,U3 = 0, the current
I1 is seen to vanish once U1 = −κU2, where κ is constant
and assumed to be known from previous measurements.
The (presumably unknown) voltage U2 can thus be deter-
mined by tuning U1 to the point where I1 = 0.

Fig. 7. Triangular setup of nanotubes coupled by (local) elec-
trostatic interactions.
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